Formal statement Yoneda lemma
1 formal statement
1.1 general version
1.2 naming conventions
1.3 proof
1.4 yoneda embedding
formal statement
general version
yoneda s lemma concerns functors fixed category c category of sets, set. if c locally small category (i.e. hom-sets actual sets , not proper classes), each object of c gives rise natural functor set called hom-functor. functor denoted:
h
a
=
h
o
m
(
a
,
−
)
.
{\displaystyle h^{a}=\mathrm {hom} (a,-).}
the (covariant) hom-functor h sends x set of morphisms hom(a,x) , sends morphism f x y morphism
f
∘
−
{\displaystyle f\circ -}
(composition f on left) sends morphism g in hom(a,x) morphism f o g in hom(a,y). is,
h
a
:
f
⟼
h
o
m
(
a
,
f
)
=
[
[
h
o
m
(
a
,
x
)
∋
g
↦
f
∘
g
∈
h
o
m
(
a
,
y
)
]
]
{\displaystyle h^{a}\colon f\longmapsto \mathrm {hom} (a,f)=[\![\mathrm {hom} (a,x)\ni g\mapsto f\circ g\in \mathrm {hom} (a,y)]\!]}
.
let f arbitrary functor c set. yoneda s lemma says that:
for each object of c, natural transformations h f in one-to-one correspondence elements of f(a). is,
n
a
t
(
h
a
,
f
)
≅
f
(
a
)
.
{\displaystyle \mathrm {nat} (h^{a},f)\cong f(a).}
moreover isomorphism natural in , f when both sides regarded functors set x c set. (here notation set denotes category of functors c set.)
given natural transformation
Φ
{\displaystyle \phi }
h f, corresponding element of f(a)
u
=
Φ
a
(
i
d
a
)
{\displaystyle u=\phi _{a}(\mathrm {id} _{a})}
.
there contravariant version of yoneda s lemma, concerns contravariant functors c set. version involves contravariant hom-functor
h
a
=
h
o
m
(
−
,
a
)
,
{\displaystyle h_{a}=\mathrm {hom} (-,a),}
which sends x hom-set hom(x,a). given arbitrary contravariant functor g c set, yoneda s lemma asserts that
n
a
t
(
h
a
,
g
)
≅
g
(
a
)
.
{\displaystyle \mathrm {nat} (h_{a},g)\cong g(a).}
naming conventions
the use of h covariant hom-functor , ha contravariant hom-functor not standard. many texts , articles either use opposite convention or unrelated symbols these 2 functors. however, modern algebraic geometry texts starting alexander grothendieck s foundational ega use convention in article.
the mnemonic falling can helpful in remembering ha contravariant hom-functor. when letter falling (i.e. subscript), ha assigns object x morphisms x a.
proof
the proof of yoneda s lemma indicated following commutative diagram:
this diagram shows natural transformation Φ determined
Φ
a
(
i
d
a
)
=
u
{\displaystyle \phi _{a}(\mathrm {id} _{a})=u}
since each morphism f : → x 1 has
Φ
x
(
f
)
=
(
f
f
)
u
.
{\displaystyle \phi _{x}(f)=(ff)u.}
moreover, element u∈f(a) defines natural transformation in way. proof in contravariant case analogous.
the yoneda embedding
an important special case of yoneda s lemma when functor f c set hom-functor h. in case, covariant version of yoneda s lemma states that
n
a
t
(
h
a
,
h
b
)
≅
h
o
m
(
b
,
a
)
.
{\displaystyle \mathrm {nat} (h^{a},h^{b})\cong \mathrm {hom} (b,a).}
that is, natural transformations between hom-functors in one-to-one correspondence morphisms (in reverse direction) between associated objects. given morphism f : b → associated natural transformation denoted hom(f,–).
mapping each object in c associated hom-functor h = hom(a,–) , each morphism f : b → corresponding natural transformation hom(f,–) determines contravariant functor h c set, functor category of (covariant) functors c set. 1 can interpret h covariant functor:
h
−
:
c
op
→
s
e
t
c
.
{\displaystyle h^{-}\colon {\mathcal {c}}^{\text{op}}\to \mathbf {set} ^{\mathcal {c}}.}
the meaning of yoneda s lemma in setting functor h faithful, , therefore gives embedding of c in category of functors set. collection of functors {h, in c} subcategory of set. therefore, yoneda embedding implies category c isomorphic category {h, in c}.
the contravariant version of yoneda s lemma states that
n
a
t
(
h
a
,
h
b
)
≅
h
o
m
(
a
,
b
)
.
{\displaystyle \mathrm {nat} (h_{a},h_{b})\cong \mathrm {hom} (a,b).}
therefore, h– gives rise covariant functor c category of contravariant functors set:
h
−
:
c
→
s
e
t
c
o
p
.
{\displaystyle h_{-}\colon {\mathcal {c}}\to \mathbf {set} ^{{\mathcal {c}}^{\mathrm {op} }}.}
yoneda s lemma states locally small category c can embedded in category of contravariant functors c set via h–. called yoneda embedding.
cite error: there <ref group=lower-alpha> tags or {{efn}} templates on page, references not show without {{reflist|group=lower-alpha}} template or {{notelist}} template (see page).
Comments
Post a Comment