Formal definition Connection (fibred manifold)




1 formal definition

1.1 connection horizontal splitting
1.2 connection tangent-valued form
1.3 connection vertical-valued form
1.4 connection jet bundle section





formal definition

let π : y → x fibered manifold. generalized connection on y section Γ : y → jy, jy jet manifold of y.


connection horizontal splitting

with above manifold π there following canonical short exact sequence of vector bundles on y:











where ty , tx tangent bundles of y, respectively, vy vertical tangent bundle of y, , y ×x tx pullback bundle of tx onto y.


a connection on fibered manifold y → x defined linear bundle morphism











over y splits exact sequence 1. connection exists.


sometimes, connection Γ called ehresmann connection because yields horizontal distribution








h

y
=
Γ

(
y

×

x



t

x
)



t

y


{\displaystyle \mathrm {h} y=\gamma \left(y\times _{x}\mathrm {t} x\right)\subset \mathrm {t} y}



of ty , horizontal decomposition ty = vy ⊕ hy.


at same time, ehresmann connection meant following construction. connection Γ on fibered manifold y → x yields horizontal lift Γ ∘ τ of vector field τ on x onto y, need not defines similar lift of path in x y. let












r


[
,
]

t




x
(
t
)

x





r


t




y
(
t
)

y






{\displaystyle {\begin{aligned}\mathbb {r} \supset [,]\ni t&\to x(t)\in x\\\mathbb {r} \ni t&\to y(t)\in y\end{aligned}}}



be 2 smooth paths in x , y, respectively. t → y(t) called horizontal lift of x(t) if







π
(
y
(
t
)
)
=
x
(
t
)

,




y
˙



(
t
)


h

y

,

t


r


.


{\displaystyle \pi (y(t))=x(t)\,,\qquad {\dot {y}}(t)\in \mathrm {h} y\,,\qquad t\in \mathbb {r} \,.}



a connection Γ said ehresmann connection if, each path x([0,1]) in x, there exists horizontal lift through point y ∈ π(x([0,1])). fibered manifold fiber bundle if , if admits such ehresmann connection.


connection tangent-valued form

given fibered manifold y → x, let endowed atlas of fibered coordinates (x, y), , let Γ connection on y → x. yields uniquely horizontal tangent-valued one-form











on y projects onto canonical tangent-valued form (tautological one-form or solder form)








θ

x


=
d

x

μ






μ




{\displaystyle \theta _{x}=dx^{\mu }\otimes \partial _{\mu }}



on x, , vice versa. form, horizontal splitting 2 reads







Γ
:



λ






λ



Γ
=



λ


+

Γ

λ


i





i



.


{\displaystyle \gamma :\partial _{\lambda }\to \partial _{\lambda }\rfloor \gamma =\partial _{\lambda }+\gamma _{\lambda }^{i}\partial _{i}\,.}



in particular, connection Γ in 3 yields horizontal lift of vector field τ = τ ∂μ on x projectable vector field







Γ
τ
=
τ

Γ
=

τ

λ



(



λ


+

Γ

λ


i





i


)



h

y


{\displaystyle \gamma \tau =\tau \rfloor \gamma =\tau ^{\lambda }\left(\partial _{\lambda }+\gamma _{\lambda }^{i}\partial _{i}\right)\subset \mathrm {h} y}



on y.


connection vertical-valued form

the horizontal splitting 2 of exact sequence 1 defines corresponding splitting of dual exact sequence







0

y

×

x




t





x



t





y



v





y

0

,


{\displaystyle 0\to y\times _{x}\mathrm {t} ^{*}x\to \mathrm {t} ^{*}y\to \mathrm {v} ^{*}y\to 0\,,}



where t*y , t*x cotangent bundles of y, respectively, , v*y → y dual bundle vy → y, called vertical cotangent bundle. splitting given vertical-valued form







Γ
=

(
d

y

i




Γ

λ


i


d

x

λ


)





i



,


{\displaystyle \gamma =\left(dy^{i}-\gamma _{\lambda }^{i}dx^{\lambda }\right)\otimes \partial _{i}\,,}



which represents connection on fibered manifold.


treating connection vertical-valued form, 1 comes following important construction. given fibered manifold y → x, let f : x′ → x morphism , f ∗ y → x′ pullback bundle of y f. connection Γ 3 on y → x induces pullback connection







f

Γ
=

(
d

y

i





(
Γ




f
~



)


λ


i







f

λ






x



μ






d

x



μ



)





i




{\displaystyle f*\gamma =\left(dy^{i}-\left(\gamma \circ {\tilde {f}}\right)_{\lambda }^{i}{\frac {\partial f^{\lambda }}{\partial x ^{\mu }}}dx ^{\mu }\right)\otimes \partial _{i}}



on f ∗ y → x′.


connection jet bundle section

let jy jet manifold of sections of fibered manifold y → x, coordinates (x, y, yi

μ). due canonical imbedding









j


1


y



y



(
y

×

x




t





x
)




y



t

y

,


(

y

μ


i


)


d

x

μ




(



μ


+

y

μ


i





i


)


,


{\displaystyle \mathrm {j} ^{1}y\to _{y}\left(y\times _{x}\mathrm {t} ^{*}x\right)\otimes _{y}\mathrm {t} y\,,\qquad \left(y_{\mu }^{i}\right)\to dx^{\mu }\otimes \left(\partial _{\mu }+y_{\mu }^{i}\partial _{i}\right)\,,}



any connection Γ 3 on fibered manifold y → x represented global section







Γ
:
y



j


1


y

,


y

λ


i



Γ
=

Γ

λ


i



,


{\displaystyle \gamma :y\to \mathrm {j} ^{1}y\,,\qquad y_{\lambda }^{i}\circ \gamma =\gamma _{\lambda }^{i}\,,}



of jet bundle jy → y, , vice versa. affine bundle modelled on vector bundle











there following corollaries of fact.









Comments

Popular posts from this blog

Journals by countries Pedophile press

The Story Of Sugriva Sugriva

History Thames Ironworks and Shipbuilding Company