Formal definition Connection (fibred manifold)
1 formal definition
1.1 connection horizontal splitting
1.2 connection tangent-valued form
1.3 connection vertical-valued form
1.4 connection jet bundle section
formal definition
let π : y → x fibered manifold. generalized connection on y section Γ : y → jy, jy jet manifold of y.
connection horizontal splitting
with above manifold π there following canonical short exact sequence of vector bundles on y:
where ty , tx tangent bundles of y, respectively, vy vertical tangent bundle of y, , y ×x tx pullback bundle of tx onto y.
a connection on fibered manifold y → x defined linear bundle morphism
over y splits exact sequence 1. connection exists.
sometimes, connection Γ called ehresmann connection because yields horizontal distribution
h
y
=
Γ
(
y
×
x
t
x
)
⊂
t
y
{\displaystyle \mathrm {h} y=\gamma \left(y\times _{x}\mathrm {t} x\right)\subset \mathrm {t} y}
of ty , horizontal decomposition ty = vy ⊕ hy.
at same time, ehresmann connection meant following construction. connection Γ on fibered manifold y → x yields horizontal lift Γ ∘ τ of vector field τ on x onto y, need not defines similar lift of path in x y. let
r
⊃
[
,
]
∋
t
→
x
(
t
)
∈
x
r
∋
t
→
y
(
t
)
∈
y
{\displaystyle {\begin{aligned}\mathbb {r} \supset [,]\ni t&\to x(t)\in x\\\mathbb {r} \ni t&\to y(t)\in y\end{aligned}}}
be 2 smooth paths in x , y, respectively. t → y(t) called horizontal lift of x(t) if
π
(
y
(
t
)
)
=
x
(
t
)
,
y
˙
(
t
)
∈
h
y
,
t
∈
r
.
{\displaystyle \pi (y(t))=x(t)\,,\qquad {\dot {y}}(t)\in \mathrm {h} y\,,\qquad t\in \mathbb {r} \,.}
a connection Γ said ehresmann connection if, each path x([0,1]) in x, there exists horizontal lift through point y ∈ π(x([0,1])). fibered manifold fiber bundle if , if admits such ehresmann connection.
connection tangent-valued form
given fibered manifold y → x, let endowed atlas of fibered coordinates (x, y), , let Γ connection on y → x. yields uniquely horizontal tangent-valued one-form
on y projects onto canonical tangent-valued form (tautological one-form or solder form)
θ
x
=
d
x
μ
⊗
∂
μ
{\displaystyle \theta _{x}=dx^{\mu }\otimes \partial _{\mu }}
on x, , vice versa. form, horizontal splitting 2 reads
Γ
:
∂
λ
→
∂
λ
⌋
Γ
=
∂
λ
+
Γ
λ
i
∂
i
.
{\displaystyle \gamma :\partial _{\lambda }\to \partial _{\lambda }\rfloor \gamma =\partial _{\lambda }+\gamma _{\lambda }^{i}\partial _{i}\,.}
in particular, connection Γ in 3 yields horizontal lift of vector field τ = τ ∂μ on x projectable vector field
Γ
τ
=
τ
⌋
Γ
=
τ
λ
(
∂
λ
+
Γ
λ
i
∂
i
)
⊂
h
y
{\displaystyle \gamma \tau =\tau \rfloor \gamma =\tau ^{\lambda }\left(\partial _{\lambda }+\gamma _{\lambda }^{i}\partial _{i}\right)\subset \mathrm {h} y}
on y.
connection vertical-valued form
the horizontal splitting 2 of exact sequence 1 defines corresponding splitting of dual exact sequence
0
→
y
×
x
t
∗
x
→
t
∗
y
→
v
∗
y
→
0
,
{\displaystyle 0\to y\times _{x}\mathrm {t} ^{*}x\to \mathrm {t} ^{*}y\to \mathrm {v} ^{*}y\to 0\,,}
where t*y , t*x cotangent bundles of y, respectively, , v*y → y dual bundle vy → y, called vertical cotangent bundle. splitting given vertical-valued form
Γ
=
(
d
y
i
−
Γ
λ
i
d
x
λ
)
⊗
∂
i
,
{\displaystyle \gamma =\left(dy^{i}-\gamma _{\lambda }^{i}dx^{\lambda }\right)\otimes \partial _{i}\,,}
which represents connection on fibered manifold.
treating connection vertical-valued form, 1 comes following important construction. given fibered manifold y → x, let f : x′ → x morphism , f ∗ y → x′ pullback bundle of y f. connection Γ 3 on y → x induces pullback connection
f
∗
Γ
=
(
d
y
i
−
(
Γ
∘
f
~
)
λ
i
∂
f
λ
∂
x
′
μ
d
x
′
μ
)
⊗
∂
i
{\displaystyle f*\gamma =\left(dy^{i}-\left(\gamma \circ {\tilde {f}}\right)_{\lambda }^{i}{\frac {\partial f^{\lambda }}{\partial x ^{\mu }}}dx ^{\mu }\right)\otimes \partial _{i}}
on f ∗ y → x′.
connection jet bundle section
let jy jet manifold of sections of fibered manifold y → x, coordinates (x, y, yi
μ). due canonical imbedding
j
1
y
→
y
(
y
×
x
t
∗
x
)
⊗
y
t
y
,
(
y
μ
i
)
→
d
x
μ
⊗
(
∂
μ
+
y
μ
i
∂
i
)
,
{\displaystyle \mathrm {j} ^{1}y\to _{y}\left(y\times _{x}\mathrm {t} ^{*}x\right)\otimes _{y}\mathrm {t} y\,,\qquad \left(y_{\mu }^{i}\right)\to dx^{\mu }\otimes \left(\partial _{\mu }+y_{\mu }^{i}\partial _{i}\right)\,,}
any connection Γ 3 on fibered manifold y → x represented global section
Γ
:
y
→
j
1
y
,
y
λ
i
∘
Γ
=
Γ
λ
i
,
{\displaystyle \gamma :y\to \mathrm {j} ^{1}y\,,\qquad y_{\lambda }^{i}\circ \gamma =\gamma _{\lambda }^{i}\,,}
of jet bundle jy → y, , vice versa. affine bundle modelled on vector bundle
there following corollaries of fact.
Comments
Post a Comment