Quantum mechanics Transmission coefficient
using wkb approximation, 1 can obtain tunnelling coefficient looks like
t
=
exp
(
−
2
∫
x
1
x
2
d
x
2
m
ℏ
2
(
v
(
x
)
−
e
)
)
(
1
+
1
4
exp
(
−
2
∫
x
1
x
2
d
x
2
m
ℏ
2
(
v
(
x
)
−
e
)
)
)
2
,
{\displaystyle t={\frac {\displaystyle \exp \left(-2\int _{x_{1}}^{x_{2}}dx{\sqrt {{\frac {2m}{\hbar ^{2}}}\left(v(x)-e\right)}}\,\right)}{\displaystyle \left(1+{\frac {1}{4}}\exp \left(-2\int _{x_{1}}^{x_{2}}dx{\sqrt {{\frac {2m}{\hbar ^{2}}}\left(v(x)-e\right)}}\,\right)\right)^{2}}}\ ,}
where
x
1
,
x
2
{\displaystyle x_{1},\,x_{2}}
2 classical turning points potential barrier. in classical limit of other physical parameters larger planck s constant, abbreviated
ℏ
→
0
{\displaystyle \hbar \rightarrow 0}
, transmission coefficient goes zero. classical limit have failed in situation of square potential.
if transmission coefficient less 1, can approximated following formula:
t
≈
16
e
u
0
(
1
−
e
u
0
)
exp
(
−
2
l
2
m
ℏ
2
(
u
0
−
e
)
)
{\displaystyle t\approx 16{\frac {e}{u_{0}}}\left(1-{\frac {e}{u_{0}}}\right)\exp \left(-2l{\sqrt {{\frac {2m}{\hbar ^{2}}}(u_{0}-e)}}\right)}
where
l
=
x
2
−
x
1
{\displaystyle l=x_{2}-x_{1}}
length of barrier potential.
Comments
Post a Comment